If you have enough mass within the whole gallery space, then heat regulation is easy. Just make sure that enough heat leaves over the night to balance what came in during the day. That will mostly happen through the rock of the gallery floor and lower walls. If anything, the windows won't be enough for that and very minimal radiators would need to run every now and then at night.
In the Gallery, the heat entering during the day is what comes through the light tubes, and the water dome at the bottom, which is a small fraction of the sunlight falling on the surface covering the Gallery. Each light tube would pass in about 27 kW of sunlight all day, and there are 76 in the current design. Note that this can be adjusted at any time - shift the angle of the Fresnel lens, and the amount of light coming in can be decreased to any fraction desired. But if that wasn't done - and it would be far better not to because sunlight really feels good and makes plants grow - the whole set would pass almost exactly 2000 kW of sun in all day. The heat capacity of most rocks found on the Moon is 0.8 kJ/kgK, meaning that if that sun was all hitting 2.5 tons of it, it would heat up by one degree celsius every second. Alright, that does sound like a lot, and is the exact reason sun is going to be used to make the materials for the habs in the first place. But the Gallery is going to have a HUGE amount of thermal mass.
The image below is from Constraints on the depth and variability of the lunar regolith by Wilcox et al, and shows the estimated depth below which the Moon is pure rock. Because of our lack of data, this model could be off quite a bit, and also in the case of large craters like Lalande, the regolith at the very rim has been modeled as being twice as deep as it is in the surrounding landscape. Still, considering how far down the crater wall the Gallery extends, it stands to reason that a large portion will be cut out of solid rock (and that isn't a problem). So how much thermal mass does it have? Well, for all intents and purposes, it is a cave. Oodles.
There is a book that uses this concept for the design of houses that use no heating, but remain quite close to the same temperature all the time by balancing the sun that comes in the windows with the heat that seeps out of a mass of earth kept dry and insulated from surface temperature changes under a layer of insulation and plastic. It is called Passive Annual Heat Storage, by John Hait. The concept never really took off as there aren't many people with enough space, the inclination and money to have one built, and in spots where it isn't too hard to gather enough bone-dry earth, and keep it that dry until it has been properly emplaced and protected. However, in the examples that exist, temperatures fluctuate only by 1 degree Celsius or so through the whole year, even in places with harsh winters.
A dry earth mass extending 6 m from the house was necessary, and south-facing windows |
Heat moves most where the gradient is highest |
There are many possible options for layout of the trenches, this is just one. Mostly what the trenches do is create bottlenecks to outflow of heat so more of it stays closer to the hab. At the scale of the gallery, the vertical trenches are about 35 m long, the horizontal ones 10 m, and the diagonal ones about 15 m, since the gallery is about 32 m wide (and varies in depth). So, creating them isn't a small thing, but fiber-optic cables coming from sets of concentrating mirrors will provide a great tool for the job that can melt rock very quickly. Since the gallery is on a slope, the molten rock created can be drained away simply by allowing it to flow away downhill. Do this correctly once, and down the centuries this space will never need more than very minimal heating or cooling, so it is worth it.
The light entering the sports hab is indirect light reflected off the ground outside for the first 11.5 Earth days of each Moon day. The surface of the Moon reflects very little sunlight. In Lalande, which is brighter than surrounding land, it probably reflects about 15% of the sun's light. How much heat would pass through the windows at different times of day is a complex calculation far beyond me, but think of it this way - it would be less than the heat passing through such windows on Earth due to indirect sunlight bouncing off lawns and fields. For 2.5 Earth days before sunset progressively more of the windows would be hit by direct sun, mostly at an oblique angle, so that over the course of that time maybe a quarter of that sun would pass into the hab. Water is about the best thermal mass there is, so 3000 tons of it in the pool will heat up very little due to that amount of sun over the day. It would take about 12.5 billion watts to heat it up by 1 degree Celsius. Taking everything together, i'd guess it might heat up by 3 degrees Celsius in a day. Heat is shed only by radiation in a vacuum, so only a portion of that heat would leave that space over the night. I couldn't tell you how much, that is too sophisticated a calculation for me to even estimate. But it is safe to say that after maybe 3 months, if the extra heat wasn't passed into the Gallery or shed by a small radiator over the course of the night, that space would feel too warm. Not sweltering, just too warm.
In the case of the dome, for the sake of making life easy, it would be good to put a layer of that smart glass on the outside, that changes opacity when a charge is run through it. The sun is pretty bright during the day so that would make it much more pleasant to be inside, aside from making it simple to fine-tune the interior temperature.
In short, there will be no problem regulating the temperature of the habs.
(Note: Health Tips on the Moon - Part 2 shows the Sports Hab, and the Sketchfab on the main page labelled Gallery Lunar Habitat shows the Gallery and the dome at the bottom of it - it is the 4th one, you have to scroll down a bit.)
OT: I think indoor architecture could take advantage of the low gravity to allow for flying humans. Waving with wings on the arms seems to be laborsome, but possible for lower weight better trained persons. But a fan as a backpack or a board to stand on, might make it quite comfortable. Building high is also facilitated by the low gravity, but is impractical if buildings are to be covered with regolith as radiation protection.
ReplyDeleteI hear you, and i am working hard to get to the point where i can present concepts on both things. If you could pump with your legs, bird-like wings would be more feasible. Also the big trick is to get going, then you just need to maintain forward momentum so the lift on the wings reduces your workload.
DeleteThe vision for building high is tied to putting domes over large areas - in this case, all of Lalande Crater, which is 22 km across. As with all buildings, the stress on that dome will come from containing the pressure of the atmosphere inside it, not from supporting its own weight - even with 6 m of water over the whole thing for radiation protection. So, you might as well anchor it at many points across its span and create a segmented dome. And if you have already placed huge cables for such anchors, then you can build around them and that would only reinforce the whole thing. The center towers in that setup will be about 5 km high, and be true buildings from top to bottom. Stay tuned :)
Fly with the legs, of course! Flying birds have weak legs, strong chests. They are the wrong role model for us. The crazy guys with their mad flying suicide machines in the 19th century don't seem to have thought much about that. We should not underestimate the power of the human ass! Even I can move 200 kg on my shoulders upwards by extending my legs in the gym. That's more than a ton on the Moon. (But I can't do many push ups or much climbing).
Delete*"You load sixteen tons, what do you get"*
On the Moon you get fired for not putting in any effort!
Go to the Moon. Go superman!
A (or rather several to cover 22 km) central tower(s), or rather habitable skyscrapers, more for temporary visits than sleeping quarters, with cables to hold up the dome, that sounds... sound. Good ideas all around here.
You wouldn't want to sleep 5 km off the ground? I'd do it in a second. After all, i'll have wings. :D
Delete